Carnegie Mellon University Heinzcollege

95-865: Clustering wrap-up, topic modeling with Latent Dirichlet Allocation (LDA)

George Chen

Questionnaire Results

For the most part: students seem to want more demos

Reminders

- Your mid-mini quiz is on Wednesday (coverage: up to today)
 - Bring a laptop with Anaconda Python 3.6 (which includes Jupyter) installed
 - Make sure you have enough laptop battery life, or sit near an outlet
 - Open notes (so you can look at homework and demos)
 - Open internet (e.g., you can search up API documentation; cite external sources if it's not official API documentation such as stackoverflow)
 - No collaboration
- My office hours this week: Tuesday 5pm-7pm, HBH 2216

How to Choose a Clustering Method?

In general: not easy!

Some questions to think about:

- What features to even cluster on?
- For your application, what distance/similarity makes sense?
- Do you care about cluster assignments for new points?
- After you run a clustering algorithm, look at what data points ended up in the same cluster and make visualizations| (e.g., histogram of various feature values)
 - Can you interpret the clusters?
 - Compare the cluster centers: do any of the centers for different clusters appear too close?
- Can you come up with some heuristic score function to say how good a cluster assignment is?

Clustering Last Remarks

- It's possible that several clustering methods give similar results (*which is great!* — it means that there are some reasonably "stable" clusters in your data)
 - Example: *tons* of clustering methods can figure out from senate voting data who Democrats and Republicans are (of course, *without* knowing each senator's political party)
- Ultimately, you have to decide on which clustering method and number of clusters make sense for your data
 - Do not just blindly rely on numerical metrics (e.g., CH index)
 - Interpret the clustering results in the context of the application you are looking at

If you can set up a prediction task, then you can use the prediction task to guide the clustering

A Sketch of Interpreting Clusters

Demo

What if these two users shared a Netflix account (and used the same user profile)?

What if these two users shared a Netflix account (and used the same user profile)?

Topic Modeling

Movie recommendation

Each user is part of multiple "clusters"/topics

Each cluster/topic consists of a bunch of movies (example clusters: "sci-fi epics", "cheesy rom-coms")

Text

Each document is part of multiple topics

Each topic consists of a bunch of regularly co-occurring words (example topics: "sports", "medicine", "movies", "finance")

Health care

Each patient's health records explained by multiple "topics" Each topic consists of co-occurring "events" (example topics: "heart condition", "severe pancreatitis")

Topic Modeling

Movie recommendation

Each user is part of multiple "clusters"/topics

Each cluster/topic consists of a bunch of movies

(example all lateral "and filables" "abaaav rom aams")

In all of these examples:

- Each data point (a feature vector) is part of multiple topics
- Each to (exar - Each topic corresponds to specific feature words values in the feature vector likely appearing hce")

Health care

Each patient's health records explained by multiple "topics" Each topic consists of co-occurring "events" (example topics: "heart condition", "severe pancreatitis")

Latent Dirichlet Allocation (LDA)

- Easy to describe in terms of text (but works for not just text)
- Input: "document-word" matrix, and pre-specified # topics k
 Word

i-th row, *j*-th column: # times word *j* appears in doc *i*

• Output: what the *k* topics are (details on this shortly)

LDA Example

2.

LDA Example

2.

LDA Example

1.

2.

LDA models each word in document *i* to be generated as:

- Randomly choose a topic *Z* (use topic distribution for doc *i*)
- Randomly choose a word (use word distribution for topic Z)

LDA

- Easy to describe in terms of text (but works for not just text)
- Input: "document-word" matrix, and pre-specified # topics k
 Word

i-th row, *j*-th column: # times word *j* appears in doc *i*

• Output: the *k* topics' distribution of words

LDA

Demo

How to Choose Number of Topics k?

Bayesian nonparametric variant of LDA: Hierarchical Dirichlet Process (HDP)

(similar to how we went from GMM to DP-GMM)

Something like CH index is also possible:

For a specific topic, look at the *m* most probable words ("top words")

Coherence (within cluster/topic variability):

log $\frac{(\# \text{ documents with at least one appearance of } v \text{ and } w) + \varepsilon}{\# \text{ documents with at least one appearance of } w}$

choose something small like 0.01

Inter-topic similarity (between cluster/topic variability):

Count # top words that do not appear in Can average any of the other topics' *m* top words each of these across the topics

top words v.w that are not the same

(number of "unique words")